Bab11. Persamaan Diferensial Parsial. Persamaan diferensial parsial dijumpai dalam kaitan dengan berbagai masalah fisik dan geometris bila. fungsi yang terlibat tergantung pada dua atau lebih peubah bebas. Tidak berlebihan jika dikatakan bahwa. hanya sistem fisik yang paling sederhana yang dapat dimodelkan dengan persamaan diferensial biasa.
Kalkulus II Ā» Turunan Fungsi Peubah Banyak āŗ Optimasi Fungsi Peubah Banyak - Materi, Contoh Soal dan Pembahasan Turunan Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Sebenarnya konsep mengenai optimasi fungsi telah dijelaskan dalam bahasan mengenai aplikasi turunan dalam Kalkulus 1. Di sana kita membahas bagaimana mencari nilai maksimum dan minimum untuk fungsi satu peubah. Akan tetapi, bagaimana jika fungsi yang ada bukan satu peubah, melainkan banyak peubah? Setelah selesai membaca tulisan ini, Anda akan bisa menjawabnya dengan yakin. Sekarang, andaikan \p=x,y\ dan \p_0=x_0,y_0\ masing-masing berupa sebuah titik peubah dan sebuah titik tetap, di ruang dimensi-dua. Kita definisikan nilai maksimum dan minimum sebagai berikut. Definisi Nilai Maksimum dan Minimum Andaikan \p_0\ suatu titik di \S\, yaitu daerah asal dari \f\. Maka \fp_0\ adalah nilai maksimum global dari \f\ pada \S\ jika \fp_oā„fp\ untuk semua \p\ di \S\. \fp_0\ adalah nilai minimum global dari \f\ pada \S\ jika \fp_oā¤fp\ untuk semua \p\ di \S\. \fp_0\ adalah nilai ekstrem global dari \f\ pada \S\ jika ia adalah suatu nilai maksimum global atau suatu nilai nilai minimum global. Definisi yang sama berlaku dengan kata global digantikan oleh lokal jika pada i dan ii, kita hanya memerlukan bahwa pertidaksamaan berlaku pada \Nā©S\, dengan N suatu lingkungan dari \p_0\. \fp_0\ adalah nilai ekstrem lokal \f\ pada \S\ jika \fp_0\ adalah sebuah nilai maksimum lokal atau nilai minimum lokal. Gambar 1 memberikan tafsiran geometri dari konsep yang telah kita definisikan. Perhatikan bahwa suatu maksimum atau minimum global secara otomatis adalah suatu maksimum atau minimum lokal. Gambar 1. Teorema A Teorema Keujudan Maksimum-Minimum Jika \f\ kontinu pada suatu himpunan tertutup dan terbatas \S\, maka \f\ mencapai suatu nilai maksimum global dan suatu nilai minimum global di \S\. Di mana Nilai-Nilai Ekstrem Muncul? Situasinya serupa seperti pada kasus satu peubah. Titik-titik kritis dari \f\ pada \S\ ada tiga jenis. Titik-titik batas. Titik-titik stasioner. Kita sebut \p_0\ suatu titik stasioner jika \p_0\ adalah suatu titik-dalam dari \S\ di mana \f\ dapat didiferensialkan dan \āfp_0=0\. Pada titik yang demikian, bidang singgung adalah mendatar. Titik-titik singular. Kita sebut \p_0\ suatu titik singular jika \p_0\ adalah suatu titik-dalam dari \S\ di mana \f\ tidak dapat didiferensialkan ā misalnya, titik di mana grafik \f\ mempunyai pojok tajam. Teorema B Teorema Titik Kritis Andaikan \f\ didefinisikan pada suatu himpunan S yang mengandung \p_0\. Jika \fp_0\ adalah suatu nilai ekstrem, maka \p_0\ haruslah berupa suatu titik kritis; yakni, \p_0\ berupa salah satu dari suatu titik batas dari \S\; atau suatu titik stasioner dari \f\; atau suatu titik singular dari \f\. Contoh 1 Cari nilai-nilai maksimum atau minimum lokal dari \fx,y=x^2-2x+y^2/4\. Penyelesaian Fungsi yang diberikan dapat didiferensialkan sepanjang daerah asalnya, yaitu bidang \xy\. Jadi, titik-titik kritis yang mungkin adalah titik-titik stasioner yang diperoleh dengan cara menetapkan \f_x x,y\ dan \f_y x,y\ sama dengan nol. Tetapi \f_x x,y=2x-2\ dan \f_y x,y=y/2\ adalah nol hanya jika \x = 1\ dan \y = 0\. Tinggal memutuskan apakah \1,0\ memberikan nilai maksimum atau nilai minimum atau bukan keduanya. Perhatikan bahwa \f1,0=-1\ dan Jadi, \f1,0\ sebenarnya adalah suatu minimum global untuk \f\. Tidak terdapat nilai-nilai maksimum lokal. Contoh 2 Tentukan nilai-nilai minimum atau maksimum lokal dari \fx,y=-x^2/a^2 +y^2/b^2\ . Penyelesaian Titik-titik kritis hanya diperoleh dengan menetapkan \f_x x,y=-2x/a^2\ dan \f_y x,y=2y/b^2\ sama dengan nol. Ini menghasilkan titik \0,0\, yang tidak memberikan suatu maksimum atau minimum lihat Gambar 2. Ini disebut titik pelana saddle point. Fungsi tersebut juga tidak mempunyai nilai ekstrim lokal. Gambar 2 Contoh 2 mengilustrasikan kenyataan yang menyulitkan bahwa \āfx_0,y_0=0\ tidak menjamin bahwa terdapat suatu ekstrem lokal di \x_0,y_0\. Untunglah, terdapat suatu kriteria yang baik untuk menentukan apa yang terjadi di suatu titik stasioner ā topik kita yang berikutnya. Syarat Cukup untuk Ekstrem Anda seharusnya memikirkan teorema berikut sebagai suatu analogi terhadap Uji Turunan Kedua untuk fungsi satu peubah. Bukti dapat ditemukan dalam buku-buku kalkulus lanjutan. Teorema C Uji Parsial-Kedua Andaikan bahwa \fx,y\ mempunyai turunan parsial kedua kontinu di suatu lingkungan dari \x_0,y_0\ dan bahwa \āfx_0,y_0=0\. Ambil Maka jika \D > 0\ dan \f_{xx} x_0,y_0 0\ dan \f_{xx} x_0,y_0>0\, maka \fx_0,y_0\ adalah nilai minimum lokal; jika \D 0 \\[8pt] \end{aligned} Selain itu, karena \F_{xx} 1,-2=18>0\, sehingga menurut ii, \F1,-2=-10\ adalah nilai minimum lokal dari \F\. Dalam pengujian fungsi yang diberikan di titik kritis lainnya, \-1,-2\ kita dapatkan \F_{xx} -1,-2=-18, \ F_{yy} -1,-2=2\, dan \F_{xy} -1,-2=0\, yang menghasilkan \D=-360\ dan \f_{xx} 0,0=2>0\; sehingga \0, 0\ menghasilkan jarak minimum. Dengan mensubstitusikan \x = 0\ dan \y = 0\ ke dalam ekspresi untuk \d^2\, kita peroleh \d^2=4\. Jarak minimum antara titik asal dan permukaan yang diberikan adalah 2. Sumber Purcell, Edwin J., dan Dale Verberg. 1987. Calculus with Analytic Geometry, ed 5. Terjemahan Susila, I Nyoman, dkk. Kalkulus dan Geometri Analitis. Penerbit Erlangga. Purcell, Edwin J., Dale Verberg., dan Steve Rigdon. 2007. Calculus, ed 9. Penerbit Pearson. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.
Diharapkandengan Latihan Soal Menentukan Banyaknya Pemetaan yang Mungkin dari Dua Himpunan Kelas 8 dan Pembahasannya ini dapat bermanfaat baik Guru maupun Siswa dalam mempersiapkan diri menjelang kegiatan Ulangan dan Ujian khususnya untuk Mata Pelajaran matematika. Kritik dan saran saya harapkan untuk kemajuan blog ini dimasa yang akan datang. Dapatkan berbagai Soal UH, UTS, UAS, UKK, UN, TO
Banyak Fungsi Pemetaan Jika banyak himpunan P adalah n P = p dan banyak anggota himpunan Q adalah n Q = q, maka banyak fungsi pemetaan dari himpunan P ke Q adalah qp. himpunan Q ke P adalah pq. Contoh 1 Jika himpunan P = {-1, 1} dan Q = {e, f, g, h, i}, maka tentukan banyak fungsi pemetaan himpunan P ke Q. Penyelesaian DiketahuiP = {-1, 1}, n P = p = 2Q = {e, f, g, h, i}, n Q = q = 5 Banyak fungsi dari himpunan P ke Q = qp Jadi, banyak fungsi dari himpunan P ke Q = 52 = 25. Contoh 2 Jika himpunan P = {-1, 1} dan Q = {e, f, g, h, i}, maka tentukan banyak fungsi pemetaan himpunan Q ke P. Penyelesaian DiketahuiP = {-1, 1}, n P = p = 2Q = {e, f, g, h, i}, n Q = q = 5 Banyak fungsi dari himpunan Q ke P = pq Jadi, banyak fungsi dari himpunan Q ke P = 25 = 32.
. i8qu9g7eqe.pages.dev/226i8qu9g7eqe.pages.dev/179i8qu9g7eqe.pages.dev/654i8qu9g7eqe.pages.dev/908i8qu9g7eqe.pages.dev/241i8qu9g7eqe.pages.dev/647i8qu9g7eqe.pages.dev/713i8qu9g7eqe.pages.dev/526i8qu9g7eqe.pages.dev/295i8qu9g7eqe.pages.dev/583i8qu9g7eqe.pages.dev/437i8qu9g7eqe.pages.dev/661i8qu9g7eqe.pages.dev/662i8qu9g7eqe.pages.dev/577i8qu9g7eqe.pages.dev/777
tentukan banyak fungsi yang mungkin